Chapter 4

Functional Modeling

Scanned by TapScanner

Scanned by TapScanner

4.0 Introduction

The functional model describes computations and specifies those aspects of the
system concerned with transformations of values - functions, mappings, constraints,
and functional dependencies. The functional model captures what the system does,

without regard to how or when it is done.

The functional model uses a hierarchy of data flow diagrams (DFDs) in a similar
fashion to the Yourdon method. However, the DFDs are not very well integrated with
the object and dynamic models and it is difficult to imagine many projects making
extensive use of the functional model.

Some aspects of the functional model are, however, quite useful. For example, the
context diagram is vital for defining the scope of the system. Also, it may be possible
to strengthen the real-time aspects of the method by introducing the concept of a
processor and task model using DFDs.

Data Flow Diagrams are commonly used during problem analysis. They are quite
general and are not limited to problem analysis for software requirements
specification. DFDs are very useful in understanding a system and can be effectively

used during analysis.

41 Objectives

In this chapter, you will learn what is functional model and DFDs. The chapter
discusses how to draw a DFD, what is data dictionary and metadata. It also

introduces concepts of candidate keys.

4.2 Presentation of Contents

4.2.1 Functional Modeling

The functional model describes computations and specifies those aspects of the
system concerned with transformations of values - functions, mappings, constraints,
and functional dependencies. The functional model captures what the system does,

without regard to how or when it is done.

Scanned by TapScanner

Scanned by TapScanner

The functional model is represented graphically with multiple data flow diagrams,
which show the flow of values from external inputs, through operations and internal
data stores, to external outputs. Data flow diagrams show the dependencies
between values and the computation of output values from input values and
functions. Functions are invoked as actions in the dynamic model and are shown as
operations on objects in the object model. The data flow diagram should adhere to
OMT's notation and exploit the capabilities of OMT, such as nesting, control flows,
and constraints.

4.2.1.1 Data Flow Diagram (DFD)

Data Flow Diagrams are commonly used during problem analysis. They are quite
general and are not limited to problem analysis for software requirements
specification. DFDs are very useful in understanding a system and can be effectively

used during analysis.

A DFD shows the flow of data through a system. It views a system as a function that
transforms the inputs into desired outputs. Any complex system will not perform this
transformation in a "single step”, and a data will typically undergo a series of
transformations before it becomes the output. The DFD aims to capture the
transformations that take place within a system to the input data so that eventually
the output data is produced. The agent that performs the transformation of data from
one state to another is called a process. So a DFD shows the movement of data

through the different transformation or process in the system.

DFDs are basically of 2 types: Physical and logical ones. Physical DFDs are used in
the analysis phase to study the functioning of the current system. Logical DFDs are

used in the design phase for depicting the flow of data in a proposed system.

In a nutshell, a data flow diagram is a graph showing the flow of data values from
their sources in objects through processes that transform them to their destinations

in other objects.

Scanned by TapScanner

Scanned by TapScanner

Data Flow Diagrams are composed of the four basic symbols — external entities,
processes, data stores and data flow - as discussed below.

« The External Entity symbol represents sources of data to the system or
destinations of data from the system.

« The Process symbol represents an activity that transforms or manipulates the
data (combines, reorders, converts, etc.).

« The Data Store symbol represents data that is not moving (delayed data at rest).

« The Data Flow symbol represents movement of data.

Any system can be represented at any level of detail by these four symbols. Now,

these four elements of DFD are discussed in detail.

4.2.1.1.1 External Entity

The External Entity symbol represents sources of data to the system or destinations
of data from the system. They determine the system boundary. They are external to
the system being studied. They are often beyond the area of influence of the
developer. They can represent another system or subsystem. These go on
margins/edges of data flow diagram. They are represented by a rectangle symbol

and are named with appropriate name as shown in Fig below.

External
Entity

Some authors call them actors as they are active objects that drive the data flow
diagram by producing or consuming values. Actors are attached to the inputs and
outputs of a data flow diagram. Actors are also called as terminators as they act as

source and sink for data.
4.21.1.2 Process

Processes are work or actions performed on incoming data flows to produce
outgoing data flows. These show data transformation or change. Data coming into a

Scanned by TapScanner

Scanned by TapScanner

process must be "worked on" or transformed in some way. Thus, all processes must
have inputs and outputs. In some cases, data inputs or outputs will only be shown at
more detailed levels of the diagrams. Each process is always "running" and ready to
accept data. Major functions of processes are computations and making decisions.

Each process may have dramatically different timing: yearly, weekly, daily etc.

A process is depicted by a circle as shown below:

Every process is named. Processes are named with one carefully chosen verb and
an object of the verb. There is no subject. Name is not to include the word "process”.
Each process should represent one function or action. If there is an "and" in the
name, you likely have more than one function (and process). For example, get
invoice, update customer and create Order. Processes are numbered within the
diagram as convenient. Levels of detail are shown by decimal notation. For example,
top level process would be Process 4, next level of detail Processes 4.1, and so on.
Processes should generally move from top to bottom and left to right.

2313 Data Store

Data stores are repository for data that are temporarily or permanently recorded
within the system. It is an "inventory” of data. These are common link between data

and process models. Only processes may connect with data stores.

There can be two or more systems that share a data store. This can occur in the
case of one system updating the data store, while the other system only accesses
the data. Data stores are represented by open rectangle or two parallel lines as

shown below.

Data Store
or

Scanned by TapScanner

Scanned by TapScanner

Data stores are named with an appropriate name, not to include the word "file",
Names should consist of plural nouns describing the collection of data. Like

customers, orders, and products. These may be duplicated.

They store data for later use. They do not generate any operation on its own but can
respond to request. That is why they are passive objects in a data flow diagram.

42114 Data Flow

Data flow represents the input (or output) of data to (or from) a process, data store or
an actor. Data flow only data, not control. Represent the minimum essential data the
process needs. Using only the minimum essential data reduces the dependence

between processes. Data flows must begin and/or end at a process.

Data flows are always named. Name is not to include the word "data". It should be
given uniqgue names. Names should be some identifying noun. For example, marks,

order, payment, complaint, registration no.

A data flow is represented by an arrow as shown in Fig below.

Data Flow—=

An arrow between the producer and the consumer of the data value represents a
data flow. Arrow is labeled with description of data. Data can be elementary or
aggregate. Input arrow indicates storing data in the data store and output arrow

indicates accessing of data from data store.

Elementary data can not be decomposed into its meaningful constituents. For
example, roll no, pin code, and quantity. Aggregate data can be decomposed into its
meaningful constituents. For example, name can be decomposed into first name,
middle name and last name. Sometimes an aggregate value is split into its
constituents, each of which goes to a different process. A fork in the path as shown

below is used to do this. Reverse can also be done. That is elementary data coming

Scanned by TapScanner

Scanned by TapScanner

from different sources can be aggregated. This is done by reversing the arrows in
the diagram below.

Street

Address

4.21.2 Control Flow

Control flow is a Boolean value in the DFD that affects whether a process is
evaluated or not. The control flow is not an input value to the process. It is
represented by a dotted line from a process originating the Boolean value to the
process being controlled as shown in fig below. This DFD is for a withdrawal from a
bank account. The customer supplies a password and an amount. The update
(withdrawal) can occur only when password is OK, which is shown as control flow in
the diagram.

» Codedpassword Account

Password "L“"""--~-,._.,!_:’assword OK Balance

Amount 4 ¥
Customer {/‘{Ipd _—
1

Cash

Figure: Control flow

Scanned by TapScanner

Scanned by TapScanner

4.2.3 Examples of DFDs

Example1: An example of a Data Flow Diagram - DFD for a system that pays
workers is shown in the figure below. In this DFD there is one basic input data flow,
the weekly time sheet, which originates from the source worker. The basic output is
the pay check, the sink for which is also the worker. In this system, first the
employee's record is retrieved, using the employee ID, which is contained in the time

sheet. From the employee record, the rate of payment and overtime are obtained.

Get
Employee
Emgloyee 1D Emgﬁ;yae Record
Pay Rate
Worl Regular Weekly Overtime
ol Hours 4’ Rate
Pay
. Overtime
Overtime Hours Q
Total
Fay
Company
Tax Rates R |
Worker

Figure: DFD of a system that pays workers.

These rates and the regular and overtime hours (from the time sheet) are used to
complete the payment. After total payment is determined, taxes are deducted. To
computer the tax deduction, information from the tax rate file is used. The amount of

tax deducted is recorded in the employee and company records. Finally, the

Scanned by TapScanner

Scanned by TapScanner

paycheck is issued for the net pay. The amount paid is also recorded in company

records.

Following are the set of DFDs drawn for the General model of publisher's present

ordering system.

T Book Information
File
Customer 25
l Involce
(with shipmeant)
Credit Customer
Check Information
First Level DFD
Book Information
File ——
Book store
~* order
—— Order OK Order
— " o 2]
l Customer } Orders Cirdler Assembiled
Credit Assemble
Check Requisition | Shtpp#ng_‘_ Ware
| To Order Hosa
Ware house
Customer
Information

Second Level DFD - Showing Order Verification & credit check

Scanned by TapScanner

Scanned by TapScanner

Book Information
File

Hose

Ware housa

Shipping
informaton

Orders
[—C‘:mmw
Shipping Credit :
Notice Check Shipping order datalls
(with | Y
books) Customer Book Publisher shipping
|nformation file Delails details
Address |
Assemble
ek * gssemblf
orders Order details Book titles
quantities

Third Level DFD - Elaborating an order processing & shipping

Book Information
File
Orders Order OK Raquismn D’”ﬂ" l Ware l
Cuslomer Process To Hose
Order + MR
K Book atura
order
Shipping Cradi
o A Check Shipping arder detalls
(with - Yy
books) Customer Fublisher shipping
Information file Detaﬂs detalis
Address
Shipping
ol Assemble Verify information
Customer Shi t Shippin
rayment quantmas
Crngte Varlly
Invoice invoice
Invosce
Copy of
e Invoice
Account Recaivable

*..-_._.

File

Fourth level DFD: Completed DFD, Showing Account Receivable Routine.

10

Scanned by TapScanner
Scanned by TapScanner

From the level one it shows the publisher's present ordering system. Let's expand
process order to elaborate on the logical functions of the system. First, incoming
orders are checked for correct book titles, author's names, and other information and
then batched into other book orders from the same bookstore to determine how may
copies can be shipped through the ware house. Also, the credit status of each book
stores is checked before shipment is authorized. Each shipment has a shipping
notice detailing the kind and numbers of booked shipped. This is compared to the
original order received (by mail or phone) to ascertain its accuracy. The details of the
order are normally available in a special file or data store, called "Bookstore Orders".

It is shown in the second level DFD diagram.

Following the order verification and credit check, a clerk batches the order by
assembling all the book titles ordered by the bookstore. The batched order is sent to
the warehouse with authorization to pack and ship the books to the customer. It is

shown in the third level DFD diagram.

Further expansion of the DFD focuses on the steps in billing the bookstore shown in
the fourth level DFD, additional functions related to accounts receivable.

Example 3: DFD below shows updation of a bank account in a banking system.

Bank accounts” @ o Account

name

Customer Balance

Corian S

[l

Scanned by TapScanner

Scanned by TapScanner

Example 4: DFD below shows the purchase order processing system. There are four
actors involved in this system — Purchasing Officer, Vendor, Purchaser 1 and
Purchaser 2. Purchasing Officer creates purchase orders on receiving the purchase
acquisition requests from the perspective purchasers. Purchasers approve orders
and they can verify the status of the orders. All order details are kept in a database.

This functional model represents:

Functions. For example, create order and approve order.
Data flows. For example, purchasing data flows from the purchasing officer to

the create order function.
External entities. For example, a vendor is an entity external to the system.
Data stores. For example, orders are kept in an order data store

12

Scanned by TapScanner

Scanned by TapScanner

Purchaser
1

Kapp roval

Approve
Order

purchase
requistion

purchasing
data

Purchasing approval

Officer

arder

purchase status

order

Expedite Purchaser
Vendor Order 2
delvery verification
docket

4.2.2 Data Dictionary and Meta Data

In the data flow diagrams, we have given names to data flows, processes and data
stores. Although the names are descriptive of the data, they do not give details. So
following the DFD, the interest is to build some structures place to keep details of the
contents of data flows, processes and data stores. Here comes the concept of data

dictionary.

A data dictionary is a structured repository of data about data. It is a set of rigorous
definitions of all DFD data elements and data structures. To define the data
structure, different notations are used. These are similar to the notations for regular
expression. Essentially, besides sequence or composition (represented by +)

selection and iteration are included. Selection (represented by vertical bar

I‘I|H

) means
one or the other, and repetition (represented by "*") means one or more occurrences.

13

Scanned by TapScanner

Scanned by TapScanner

The data dictionary for the DFD of system that pays to workers given above is
created as shown below:

Weekly timesheet = Employee_Name + Employee ID + {Regular_hours +

overtime_hours}

Pay_rate = {Horly | Daily | Weekly} + Rupees_amount
Employee_Name = Last + First + Middle_Initial
Employee_ID = digit + digit + digit + digit

Most of the data flows in the DFD are specified here. Some of the most obvious ones
are not shown here. The data dictionary entry for weekly timesheet specifies that this
data flow is composed of three basic data entities - the employee name, employee
ID and many occurrences of the two - tuple consisting of regular hours and overtime
hours. The last entity represents the daily working hours of the worker. The data
dictionary also contains entries for specifying the different elements of a data flow.

Once we have constructed a DFD and its associated data dictionary, we have to
somehow verify that they are "correct". There can be no formal verification of a DFD,
because what the DFD is modeling is not formally specify anywhere against which
verification can be done. Human processes and rule of thumb must be used for
verification. In addition to the walkthrough with the client, the analyst should look for

common errors. Some common errors are

e Unlabeled data flows.

e Missing data flows: Information required by a process is not available.

e Extraneous data flows: Some information is not being used in the process
e Consistency not maintained during refinement

e Missing processes

¢ (Contains some control information

The DFDs should be carefully scrutinized to make sure that all the processes in the
physical environment are shown in the DFD. It should also be ensured that none of

the data flows is actually carrying control information.

14

Scanned by TapScanner

Scanned by TapScanner

Meta Data: It is loosely defined as data about data. Metadata is a concept that
applies mainly to electronically archived or presented data and is used to describe
the: a) definition, b) structure andc) administration ofdata files with
all contents in context to ease the use of the captured and archived data for further
use. For example, a web page may include metadata specifying what language it's
written in, what tools were used to create it, where to go for more on the subject and

SO On.

Metadata is defined as data providing information about one or more other pieces of
data, such as:

5 means of creation

. purpose of the data

. time and date of creation

. creator or author of data

: placement on a network (electronic form) where the data was created,
. What standards used etc.

For example: A digital image may include metadata that describes how large the
picture is, the color depth, the image resolution, when the image was created, and
other data. A text document's metadata may contain information about how long the
document is, who the author is, when the document was written, and a short

summary of the document.

Metadata is data. As such, metadata can be stored and managed in a database,
often called a registry or repository. However, it is impossible to identify metadata
just by looking at it. We don't know when data is metadata or just data.

Metadata is structured data which describes the characteristics of a resource. It
shares many similar characteristics to the cataloguing that takes place in libraries,
museums and archives. The term "meta" derives from the Greek word denoting a
nature of a higher order or more fundamental kind. A metadata record consists of a
number of pre-defined elements representing specific attributes of a resource, and
each element can have one or more values. Below is an example of a simple

metadata record:

Scanned by TapScanner

Scanned by TapScanner

Element name Value

Title Web catalogue

Creator Rajender Nath

Publisher G.J.U. Hisar

|dentifier www.gju.ac.in.metadata.htmi
Format Text/html

Relation Distance Education Web site

Each metadata schema will usually have the following characteristics:

e« a limited number of elements
« the name of each element

« the meaning of each element

Typically, the semantics is descriptive of the contents, location, physical attributes,
type (e.g. text or image, map or model) and form (e.g. print copy, electronic file). Key
metadata elements supporting access to published documents include the originator
of a work, its title, when and where i1t was published and the subject areas it covers.
Where the information is issued in analog form, such as print material, additional
metadata is provided to assist in the location of the information, e.g. call numbers
used in libraries. The resource community may also define some logical grouping of
the elements or leave it to the encoding scheme. For example, Dublin Core may
provide the core to which extensions may be added.

In a nutshell, metadata is structured information that describes, explains, locates, or
otherwise makes it easier to retrieve, use, or manage an information resource.

Metadata is often called data about data or information about information.

There are three main types of metadata:

16

Scanned by TapScanner

Scanned by TapScanner

Descriptive metadata: It describes a resource for purposes such as discovery and
identification. It can include elements such as title, abstract, author, and keywords.
Structural metadata: It indicates how compound objects are put together, for
example, how pages are ordered to form chapters.

Administrative metadata: It provides information to help manage a resource, such as
when and how it was created, file type and other technical information, and who can

access it.
4.2.3 Steps to Produce a DFD

« Identify and list external entities providing inputs/receiving outputs from system
« lIdentify and list inputs from/outputs to external entities

« Draw a context DFD
Defines the scope and boundary for the system and project

e Think of the system as a container (black box)

e |Ignore the inner workings of the container

e Ask end-users for the events the system must respond to

e For each event, ask end-users what responses must be produced by the
system

e |dentify any external data stores

e Draw the context diagram
I. Use only one process

. Only show those data flows that represent the main objective or most

common inputs/outputs

> identify the business functions included within the system boundary

. identify the data connections between business functions

. confirm through personal contact sent data is received and vice-versa

" trace and record what happens to each of the data flows entering the system

(data movement, data storage, data transformation/processing)
s Draw an overview DFD

17

Scanned by TapScanner

Scanned by TapScanner

- Shows the major subsystems and how they interact with one another
- Exploding processes should add detail while retaining the essence of the

details from the more general diagram
- Consolidate all data stores into a composite data store
» Draw middle-level DFDs

- Explode the composite processes
. Draw primitive-level DFDs

- Detall the primitive processes

- Must show all appropriate primitive data stores and data flows

o verify all data flows have a source and destination;
. verify data coming out of a data store goes in;

B review with "informed":

s Explode and repeat above steps as needed.

Balancing DFDs

s Balancing: child diagrams must maintain a balance in data content with their
parent processes

. Can be achieved by either:

5 exactly the same data flows of the parent process enter and leave the child
diagram, or

. the same net contents from the parent process serve as the initial inputs and

final outputs for the child diagram or
. the data in the parent diagram is split in the child diagram

Rules for Drawing DFDs

. A process must have at least one input and one output data flow

18

Scanned by TapScanner

Scanned by TapScanner

. A process begins to perform its tasks as soon as it receives the necessary
input data flows

s A primitive process performs a single well-defined function

. Never label a process with an IF-THEN statement

. Never show time dependency directly on a DFD

s Be sure that data stores, data flows, data processes have descriptive titles.

Processes should use imperative verbs to project action.
. All processes receive and generate at least one data flow.
: Begin/end data flows with a bubble.

Rules for Data Flows

. A data store must always be connected to a process
s Data flows must be named
e Data flows are named using nouns

Customer ID, Student information
. Data that travel together should be one data flow
o Data should be sent only to the processes that need the data

Use the following additional guidelines when drawing DFDs

s Identify the key processing steps in a system. A processing step IS an activity
that transforms one piece of data into another form.

. Process bubbles should be arranged from top left to bottom right of page.

. Number each process (1.0, 2.0, etc). Also name the process with a verb that
describes the information processing activity.

. Name each data flow with a noun that describes the information going into
and out of a process. What goes in should be different from what comes out.

. Data stores, sources and destinations are also named with nouns.

E Realize that the highest level DFD is the context diagram. It summarizes the
entire system as one bubble and shows the inputs and outputs to a system

» Each lower level DFD must balance with its higher level DFD. This means that

no inputs and outputs are changed.

19

Scanned by TapScanner

Scanned by TapScanner

. Think of data flow not control flow. Data flows are pathways for data. Think
about what data is needed to perform a process or update a data store. A
data flow diagram is not a flowchart and should not have loops or transfer of
control. Think about the data flows, data processes, and data storage that are
needed to move a data structure through a system.

s Do not try to put everything you know on the data flow diagram. The diagram
should serve as index and outline. The index/outline will be "fleshed out" in
the data dictionary, data structure diagrams, and procedure specification
techniques.

4.2.4 Different Types of Keys

This concept is related to relational data base management systems. A relation is
two dimensional table that has rows called tuples and columns called domains.
There are different types of keys, namely Primary keys, alternate keys, etc. , which

are described below.

Primary key: Within a given relation, there can be one attribute with values that are
unique within the relation that can be used to identify the tuples of that relation. That
attribute is said to be primary key for that relation. For example, in a Student relation

roll no is a primary key.

Composite primary key: Not every relation will have a single-attribute primary key.
There can be a possibility that some combination of attributes when taken together
have the unique identification property. These attributes as a group is called
composite primary key. A combination consisting of a single attribute is a special

case.

Existence of such a combination is guaranteed by the fact that a relation is a set.
Since sets don’t contain duplicate elements, each tuple of a relation is unique with
respect to that relation. Hence, at least the combination of all attributes has the

unique identification property.

20)

Scanned by TapScanner

Scanned by TapScanner

In practice it is not usually necessary to involve all the attributes-some lesser
combination is normally sufficient. Thus, every relation does have a primary
(possibly composite) key.

Tuples represent entities in the real world. Primary key serves as a unique

identifier for those entities.

Candidate key: In a relation, there can be more than one attribute combination

possessing the unique identification property. These combinations, which can act as

primary key, are called candidate keys.

EmpNo 'SocSecurityNo Name .'Age

1011 (2364236 Harry 21
1012 1002365 Sympson 19

1013 1056300 Larry 24

Table: having “EmpNo” and “SocSecurityNo” as candidate keys

Alternate key: A candidate key that is not a primary key is called an alternate key. In

fig. 8.6 if EmpNo is primary key then SocSecurityNo is the alternate key.

4.3

Summary

The functional model describes computations and specifies those aspects of
the system concerned with transformations of values - functions, mappings,
constraints, and functional dependencies.

The functional model is represented graphically with multiple data flow
diagrams, which show the flow of values from external inputs, through
operations and internal data stores, to external outputs.

DFDs play a major role in designing of the software and also provide the basis
for other design-related issues. Some of these issues are addressed in this
chapter. All the basic elements of DFD are further addressed in the designing

phase of the development procedure

21

Scanned by TapScanner

Scanned by TapScanner

e Metadata is structured information that describes, explains, locates, or
otherwise makes it easier to retrieve, use, or manage an information resource.
Metadata is often called data about data or information about information.

e Within a given relation, there can be one attribute with values that are unique
within the relation that can be used to identify the tuples of that relation. That

attribute is said to be primary key for that relation.

4.4 Self-Assessment Questions

1. What is functional model of OMT? How is it related to other models of OMT?
Explain.

2. What is DFD? What are elements of DFD? Explain the purpose of DFD with a

suitable example.

Distinguish between control flow and data flow.

Discuss the steps to draw a DFD systematically.

What is metadata? Explain its usefulness.

What is data dictionary? How is it created?

e - B

What is a key? Explain different types of keys with suitable examples.

22

Scanned by TapScanner

Scanned by TapScanner

